Show Post for December 24-Tobacco Benefits


Recipe to make this work-–You must get Tobacco that has not been sprayed or treated with 4000 chemicals–take 4 parts alcohol 1 part tobacco —add to a blender and blend for  10 minutes then strain—Your next  herb will be a sage extract( do it the same way as tobacco but use sage ) and you will need a instant or ground coffee extract( again as the sage or tobacco)once  you have extracted the 3 then combine them all 1:1:1 ratio blend again for another 10 minutes then strain—pour a portion in a pot( say 2-3 oz) and then simmer it down to almost the bottom of the pot ( about 1/8 of an inch from the bottom)  then stop and allow to cool—then when cooled put in amber bottle and top with either a cap or a dropper—use 1-2 drops several times a day —do not use before bed it may keep you awake due to brain activation


Stress and the α7 nicotinic acetylcholine receptor.

Richard G Hunter

Laboratory of Neuroendocrinology, 1230 York Ave., Rockefeller University, New York, NY 10065, USA.

Nicotine is well known for its deleterious effects on human health, and it has long been known that nicotine interacts with the stress axis in both man and in laboratory animals. Nicotine also has beneficial effects upon cognition, and an emerging literature has demonstrated that it may play a protective or palliative role in diseases such as Alzheimer’s disease and schizophrenia. Recent advances have permitted scientists to identify the specific subtypes of nicotinic receptors responsible for the drugs varied physiological effects. The α7 subunit of the nicotinic acetylcholine receptor (NAchRα7), has been identified as a significant mediator of nicotine’s interactions with the stress axis and human disease. The NAchRα7 has also been shown to have neuroprotective effects via multiple pathways, making it a logical target for the treatment of a number of brain disorders.


Nicotine as a potential neuroprotective agent for Parkinson’s disease.

Maryka Quik, Xiomara A Perez, Tanuja Bordia

Center for Health Sciences, SRI International, Menlo Park, California, USA.

Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson’s disease. This idea initially stemmed from the results of epidemiological studies that demonstrated that smoking is associated with a decreased incidence of Parkinson’s disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes containing nAChRs, including α4β2, α6β2, and/or α7, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine’s ability to reduce/halt the neuronal damage that arises in Parkinson’s disease. In addition to a potential neuroprotective action, nicotine also has antidepressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson’s disease. © 2012 Movement Disorder Society.

Neurobiol Aging. 2012 Mar 26;:   22459600


Cotinine Reduces Amyloid-β Aggregation and Improves Memory in Alzheimer’s Disease Mice.

Valentina Echeverria, Ross Zeitlin, Sarah Burgess, Sagar Patel, Arghya Barman, Garima Thakur, Magorzota Mamcarz, Li Wang, David B Sattelle, Daniel A Kirschner, Takashi Mori, Roger M Leblanc, Rajeev Prabhakar, Gary W Arendash

Bay Pines VA Healthcare System, Bay Pines, FL, USA Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.

Alzheimer’s disease (AD) affects millions of people world-wide and new effective and safe therapies are needed. Cotinine, the main metabolite of nicotine, has a long half-life and does not have cardiovascular or addictive side effects in humans. We studied the effect of cotinine on amyloid-β (Aβ) aggregation as well as addressed its impact on working and reference memories. Cotinine reduced Aβ deposition, improved working and reference memories, and inhibited Aβ oligomerization in the brains of transgenic (Tg) 6799 AD mice. In vitro studies confirmed the inhibitory effect of cotinine on Aβ1-42 aggregation. Cotinine stimulated Akt signaling, including the inhibition of glycogen synthase kinase 3β (GSK3β), which promotes neuronal survival and the synaptic plasticity processes underlying learning and memory in the hippocampus and cortex of wild type and Tg mice. Simulation of the cotinine-Aβ1-42 complex using molecular dynamics showed that cotinine may interact with key histidine residues of Aβ1-42, altering its structure and inhibiting its aggregation. The good safety profile in humans and its beneficial effects suggest that cotinine may be an excellent therapeutic candidate for the treatment of AD.

Neuroscience. 2009 May 14;:   19447162  Cit:5


Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice.

Ross Zeitlin, Sagar Patel, Sarah Burgess, Gary W Arendash, Valentina Echeverria

Research and Development, Department of Veterans Affairs, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA.

Caffeine intake has been associated with a lower incidence of Alzheimer’s disease (AD) in humans. In AD mouse models, caffeine significantly decreases senile plaques and amyloid beta (Aβ) levels while also protecting against or reversing cognitive impairment. To understand the mechanism(s) underlying the protective effects of caffeine against AD pathology, we investigated the effects of a two-week treatment with caffeine (3mg/day) in transgenic (APPswe) mice and non-transgenic (NT) mice on signaling factors involved in neuronal plasticity and survival. We evaluated cAMP-dependent protein kinase A (PKA), phospho-cyclic AMP response-element binding protein (phospho-CREB), and the pro-apoptotic protein kinases extracellular signal-regulated kinase 1/2 (phospho-ERK) and phospho-c-Jun N-terminal kinase 1 (phospho-JNK) in the striatum and frontal cortex of caffeine-treated mice. In the striatum, APPswe control mice exhibited a significant decrease in phospho-CREB, as well as significant increases in phospho-JNK and phospho-ERK in comparison to NT mice. Caffeine treatment stimulated PKA activity, increased phospho-CREB levels, and decreased phospho-JNK and phospho-ERK expression in the striatum of APPswe mice, all of which are thought to be beneficial changes for brain function. Even caffeine-treated NT mice exhibited some of these changes in striatum. In the frontal cortex, caffeine did not significantly increase phospho-CREB and PKA activity, but significantly reduced phospho-JNK and phospho-ERK expression in both APPswe and NT mice. These results suggest that caffeine shifts the balance between neurodegeneration and neuronal survival toward the stimulation of pro-survival cascades and inhibition of pro-apoptotic pathways in the striatum and/or cortex, which may contribute to its beneficial effects against AD.


Cotinine enhances the extinction of contextual fear memory and reduces anxiety after fear conditioning.

Ross Zeitlin, Sagar Patel, Rosalynn Solomon, John Tran, Edwin J Weeber, Valentina Echeverria

Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA.

Posttraumatic stress disorder (PTSD) is an anxiety disorder triggered by traumatic events. Symptoms include anxiety, depression and deficits in fear memory extinction (FE). PTSD patients show a higher prevalence of cigarette smoking than the general population. The present study investigated the effects of cotinine, a tobacco-derived compound, over anxiety and contextual fear memory after fear conditioning (FC) in mice, a model for inducing PTSD-like symptoms. Two-month-old C57BL/6J mice were separated into three experimental groups. These groups were used to investigate the effect of pretreatment with cotinine on contextual fear memory and posttreatment on extinction and stability or retrievability of the fear memory. Also, changes induced by cotinine on the expression of extracellular signal-regulated kinase (ERK)1/2 were assessed after extinction in the hippocampus. An increase in anxiety and corticosterone levels were found after fear conditioning. Cotinine did not affect corticosterone levels but enhanced the extinction of contextual fear, decreased anxiety and the stability and/or retrievability of contextual fear memory. Cotinine-treated mice showed higher levels of the active forms of ERK1/2 than vehicle-treated mice after FC. This evidence suggests that cotinine is a potential new pharmacological treatment to reduce symptoms in individuals with PTSD.

Brain Res. 2011 Oct 12;1417 :127-36  21907331


Cotinine- A Potential New Therapeutic Agent against Alzheimer’s disease.

Valentina Echeverria, Ross Zeitlin

Bay Pines VA Healthcare System, Bay Pines, Tampa, FL, USA Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.

Tobacco smoking has been correlated with a lower incidence of Alzheimer’s disease (AD). This negative correlation has been attributed to nicotine’s properties. However, the undesired side-effects of nicotine and the absence of clear evidence of positive effects of this drug on the cognitive abilities of AD patients have decreased the enthusiasm for its therapeutic use. In this review, we discuss evidence showing that cotinine, the main metabolite of nicotine, has many of the beneficial effects but none of the negative side-effects of its precursor. Cotinine has been shown to be neuroprotective, to improve memory in primates as well as to prevent memory loss, and to lower amyloid-beta (Aβ)) burden in AD mice. In AD, cotinine’s positive effect on memory is associated with the inhibition of Aβ aggregation, the stimulation of pro-survival factors such as Akt, and the inhibition of pro-apoptotic factors such as glycogen synthase kinase 3 beta (GSK3β). Because stimulation of the α7 nicotinic acetylcholine receptors (α7nAChRs) positively modulates these factors and memory, the involvement of these receptors in cotinine’s effects are discussed. Because of its beneficial effects on brain function, good safety profile, and nonaddictive properties, cotinine may represent a new therapeutic agent against AD.


Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery.

Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB.


Human Cognitive Neuroscience Unit, Division of Psychology, University of Northumbria, Newcastle upon Tyne, UK.


Salvia officinalis (sage) has previously been shown both to possess in vitro cholinesterase inhibiting properties, and to enhance mnemonic performance and improve mood in healthy young participants. In this double-blind, placebo-controlled, crossover study, 30 healthy participants attended the laboratory on three separate days, 7 days apart, receiving a different treatment in counterbalanced order on each occasion (placebo, 300, 600 mg dried sage leaf). On each day mood was assessed predose and at 1 and 4 h postdose. Each mood assessment comprised completion of Bond-Lader mood scales and the State Trait Anxiety Inventory (STAI) before and after 20 min performance of the Defined Intensity Stress Simulator (DISS) computerized multitasking battery. In a concomitant investigation, an extract of the sage leaf exhibited dose-dependent, in vitro inhibition of acetylcholinesterase and, to a greater extent, butyrylcholinesterase. Both doses of sage led to improved ratings of mood in the absence of the stressor (that is, in pre-DISS mood scores) postdose, with the lower dose reducing anxiety and the higher dose increasing ‘alertness’, ‘calmness’ and ‘contentedness‘ on the Bond-Lader mood scales. The reduced anxiety effect following the lower dose was, however, abolished by performing the DISS, with the same dose also being associated with a reduction of alertness during performance. Task performance on the DISS battery was improved for the higher dose at both postdose sessions, but reduced for the lower dose at the later testing session. The results confirm previous observations of the cholinesterase inhibiting properties of S. officinalis, and improved mood and cognitive performance following the administration of single doses to healthy young participants.

One thought on “Show Post for December 24-Tobacco Benefits

Comments are closed.